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The CaFezOrtype oxidenitrides BaCeLn(0,N)4 (Ln = La, Ce) have been synthesized by reaction of 
perovskite-type BaCeO, with LnN at 800°C. X-ray powder diffraction and magnetic data are presented. 
Composition data for BaCeLn(O,N), and observed magnetic moments which are smaller than would 
be expected for only a Ce 3+ electronic configuration suggest a mixed-valence state for cerium. Ca 
Cer(O,Nh and BaThCe(O,N), could not be synthesized by this procedure. o 1990 Academic press, IK. 

Introduction 

Pseudoternary transition metal oxideni- 
tride perovskite- and scheelite-type com- 
pounds have received moderate attention in 
the past decade because of their potential 
applications as dielectric materials (1-3). 
Most extensively studied have been the per- 
ovskite-related AB(O,N), species in which 
A is an alkali, alkaline earth, Y, or lantha- 
noid cation; B is W, MO, V, Nb, Ta, or Ti; 
and either A or B, or both, typically have a 
lower than maximum oxidation state (4-8). 
Scheelite-type AB(O,N), compounds have 
been studied less extensively (9-11). A few 
lanthanoid oxidenitrides are known to be 
ferromagnetic semiconductors, conductors 
(12), or superconductors (13). Since mixed 
valences, uncommon stoichiometries, and 
new structures might be achieved by effec- 
tively substituting N3- for 02-, pseudoter- 
nary lanthanoid-containing oxidenitrides 
appeared to be potentially interesting mag- 

* To whom correspondence should be addressed. 

netic and electrical materials. We therefore 
decided to investigate selected lanthanoid- 
containing oxidenitrides. 

Because cerium can exhibit multiple va- 
lency its nitride and oxidenitride systems 
seemed of special interest. Room tempera- 
ture magnetic susceptibility data suggest the 
Ce4+ content in CeN may be as high as 89% 
(14); Ce4+, as expected, has also been re- 
ported in both Li,CeN, and Ce2N20 (15). 
These observations suggest that some ce- 
rium ions tend to be in their highest oxida- 
tion state even in the presence of reducing 
N3- ions. On the other hand, cerium forms 
calcium ferrite-type BaCe,O, that presum- 
ably contains Ce3+ ions (16) and is probably 
stabilized by lattice energy. Effectively sub- 
stituting N3- for 02- in BaCe,O, by fusing 
CeN with BaCeO, thus might both lead to a 
stable compound and introduce Ce4+ into 
the lattice to give a mixed valence com- 
pound. We thus synthesized and examined 
BaCeLn(O,N), (Ln = La and Ce) com- 
pounds and present the results of these 
studies. 
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Experimental 

CeN and LaN were prepared by heating 
5-6 g of metal chips (typical purity 99.9%; 
Research Chemicals, Phoenix, AZ) in a 
slowly flowing ammonia gas (Matheson) 
stream at 700°C for 12 hr. Ground powdered 
CeN was dark brown and contained -10% 
CeO, by mass; LaN was black and con- 
tained -5% La,03. Perovskite-type Ba 
CeO, and BaThO, were synthesized by 
heating intimately ground 1 : 1 molar mix- 
tures of BaCO, and MO2 (M = Ce, Th) at 
950°C for 24 hr, then quenching them; the 
products were monophasic by X-ray pow- 
der diffraction. A 0.8-1.0 g intimately 
ground and nominally stoichiometric mix- 
ture of BaCeO, and LnN was sealed into an 
outgassed quartz tube under vacuum or an 
argon atmosphere, heated at 800°C for 24 h, 
then quenched by removal from the furnace. 

Preparations which involved nitrides and 
oxidenitrides were handled in an argon-filled 
glove box whose water content was typi- 
cally 3-8 ppm, and oxygen content 
2000-3000 ppm. Nitrogen content was de- 
termined by Galbraith Laboratories. Every 
specimen was examined by X-ray powder 
diffraction in a Guinier camera with mono- 
chromatic Cu Kar, (Aa, = 1.54050 A) radia- 
tion. NBS certified Si (a = 5.43082(4) A) 
served as internal standard. The following 
programs were utilized: for indexing inter- 
planar d-spacings, TREOR (17); for lattice 
parameter refinement, APPLEMAN (18); 
and for powder intensity calculations, 
POWD12 (19). Magnetic susceptibilities 
measured with a Quantum Design SQUID 
magnetometer at various magnetic fields be- 
tween 1000 and 20,000 G were extrapolated 
to zero reciprocal field to eliminate ferro- 
magnetic impurity contributions. A diamag- 
netism correction was found to be negligible 
and not applied. 

For electrical conductivity measurements 
- 1.5-g specimens of each product were in- 
serted into thin-walled 6.35-mm i.d. Ta cy- 
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FIG. 1. Plot of reciprocal of BaCeLa(O,N), magnetic 
susceptibility (emu mol-‘) against temperature. 

lindrical crucibles whose ends were crimped 
closed. The containers were then heated to 
1200-1300°C for -2 h in a -lo-’ Torr vac- 
uum to sinter the material. Conductivity was 
checked with a digital ohmmeter. 

Results and Discussion 

Reddish-colored BaCeLn(O,N), (Ln = 
La, Ce) powders were obtained both by 
quenching and upon slow cooling. They 
gave similar X-ray powder diffraction pat- 
terns, decomposed quickly upon contact 
with water, and evolved ammonia gas that 
was easily detected both by its smell and by 
moist pHy&ion paper. They also decom- 
posed slowly in air with a weight gain and a 
color change first to light yellow and eventu- 
ally to brown. 

Both oxidenitrides are strongly paramag- 
netic between 10 and 300 K. At tempera- 
tures greater than -40 K they obey the Cu- 
rie law. A plot of the reciprocal magnetic 
susceptibility of BaCeLa(O,N), against T is 
presented in Fig. 1. For BaCeLa(O,N), the 
presence of Ce3+ is thus clear. Observed 
magnetic moments are lower than those cal- 
culated on the basis of anf’ localized con- 
figuration for Ce3+, indicative that the ce- 
rium ions exhibit mixed valency. The 
observed magnetic moments of 1.83 and 
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TABLE I 

LATTICE PARAMETERS FOR SELECTED (Pbnm, 2 = 4) CaFe,O,-TYPE 
OXIDES AND OXIDENITRIDES 

Formula 4-Q b(& WA31 Ref.” 

BaCezO, 

BaCdO,Nh 
BaCeLa(O,N)d 
BaLa20, 

12.584 10.641 3.676 492.2 (16) 
12.565(l) 10.644(l) 3.6593(4) 489.4 
12.573(3) 10.637(3) 3.657(l) 489.1 
12.652(2) 10.686(2) 3.7077(6) 501.3 

12.662 10.675 3.705 500.8 (16) 

a This work, except as noted. 

1.70 pa at 300 K for 4 BaCez(0,N)4 and Ba 
CeLa(O,N), , respectively, correspond to 
about 1.44 Ce3+ in BaCe,(O,N), and 0.68 
Ce3+ in BaCeLa(O,N), . Approximately 
70% of the cerium ions in each compound 
are in the trivalent state. 

The BaCe,(O,N), powder X-ray diffrac- 
tion pattern can be indexed on orthorhombic 
symmetry with figures of merit, F(20) = 26 
and F(31) = 23 (20). Lattice parameters of 
both BaLn2(0,N)* compounds are listed in 
Table I. (The X-ray powder diffraction pho- 
tograph of BaCe,(O,N), contained a trace 
unidentified impurity-two very weak re- 
flections.) Systematic extinctions consistent 
with space groups Pbnm (No. 62, centro- 
symmetric) or Pbnd, (No. 33, noncentro- 
symmetric) suggest the CaFe,O,-type struc- 
ture (21). Intensities calculated using the 
atomic parameters for CaSc*O, (22) and iso- 
tropic temperature factors of 1.5, 1.0, and 
0.9, respectively, for 02-, Ba2+, and 
Ce3+ and 4+ agree well with observed values. 
Miller indices and observed and calculated 
interplanar d-spacings and intensities for 
BaCe2(0,N)4 are presented in Table II. 

Duplicate nitrogen analyses were per- 
formed on two identical but separately pack- 
aged (i.e., A,B) BaLaCe(O,N), specimens. 
Found for A: 1.60, 1.55%; for B: 1.62, 
1.49%. (The second member of each pair 
is lower than the first as would happen if 
hydrolysis occurred between analyses and 

may indicate a slightly low analysis result.) 
Combining all four results yields %N = 1.56 
f 0.05. If all anion sites are occupied, the 
formula is BaCeLa03,4,(2jNo,53(2,. The actual 
nitrogen content is slightly higher than this; 
as is indicated below, the specimen con- 
tained - 10% BaLa204. 

Duplicate nitrogen analyses were also 
performed on comparably packaged Ba 
Ce,(O,N), specimens. Found for A: 1.23, 
1.56%; for B: 2.35,2.41%. In lieu of the data 
on the Ln = La compound, the disparity 
between the two A results, and the magnetic 
data, the A set is rejected. The remaining 
analytical data suggest the formula 
BaCe203.1s(1~No.s2(1). 

Magnetic data suggest the formulas Ba 
CeLa03d%32 and BaCe203,,N,,6, again 
on the assumption of complete anion site 
occupancy. They support the mixed anion 
composition, partial reduction of Ce4+ in 
both CeN and BaCeO, by N3- when the 
latter reacts with CeN at SOO”C, and a 
greater Ce3+ ion content in the oxidenitride 
than in the reactant CeN. For BaCeLa 
(O,N), the magnetic data also underestimate 
the N-content because of the BaLa,O, im- 
purity. 

The product of the BaCeO,-LaN reaction 
is a mixture of two CaFe,O,-type structures: 
BaCeLa(O,N), and BaLa204 (16). The data 
compiled in Table I illustrate the close rela- 
tionship between the lattice parameters of 
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TABLE II 

MILLER INDICES AND CALCULATED AND OBSERVED INTERPLANAR d-SPACINGS AND INTENSITIES FOR Pbnm 
CaFe204-TYPE BaCe2(0,N)4 

0 2 0 

2 2 0 

1 0 1 

1 1 1 

4 0 0 

2 3 0 

2 1 1 

0 2 1 

4 1 0 

1 2 1 

2 2 1 

3 1 1 

1 3 1 

2 4 0 

3 2 1 

2 3 1 

4 1 1 

3 3 1 

4 2 1 

0 4 1 

1 4 1 

5 0 1 

2 4 1 

6 2 0 

5 2 1 

5.322 5.331 

4.061 4.065 

3.513 3.513 

3.336 3.338 

3.141 3.142 

3.089 3.086 

3.031 3.029 
3.015 

3.013 I 3.013 

‘ 2.932 2.932 

2.718 2.711 

2.6617 2.6677 

2.4965 2.4963 

2.4503 

2.4471 1 2.4483 

2.3606 

2.3259 2.3257 

2.1764 

2.1753 I 2.1748 

2.1521 2.1510 

2.1212 2.1208 

2.0716 2.0713 

2.0360 2.0344 

1.9487 1.9486 

1.9305 1.9301 

VW 

W 

W 

W 

m 

VS 

s 

m 

W 

W 

m 

W 

W 

- 

W 

m 

W 

W 

VW 

VW 

W 

W 

3 3 4 1 

9 0 0 2 

11 1 5 1 

9 6 3 0 

45 6 1 1 

100 4 4 1 

67 0 6 0 

32 2 5 1 

8 4 5 0 

7 6 2 1 

2 3 5 1 

26 2 2 2 

9 6 4 0 

4 5 4 1 

2 7 1 1 

3 1 6 1 

8 4 0 2 

11 2 3 2 

31 8 0 0 

21 4 1 2 

12 8 1 0 

6 4 6 0 

2 7 2 1 

12 8 2 0 

5 6 4 1 

1.9142 

1.8297 1.8283 

1.8207 1.8210 

1.8035 1.8031 

1.7916 1.7911 

1.7754 
1.7740 I 1.7134 

1.7659 
1.7623 

I 
1.7651 

1.7200 1.7202 

1.6847 1.6846 

1.6681 1.6687 

1.6457 1.6459 

1.6346 

1.5934 1.5931 

1.5836 

1.5810 
1.5806 

1.5743 

1.5706 
1.5731 

1.5639 1.5638 

1.5538 1.5536 

1.5447 
1.5424 1.5442 

1.5064 
1.5009 

I 
1.5012 

- 2 

W 20 

VW 1 

W 14 

W 17 

20 
m 

12 

14 
W 

4 

W 6 

VW 2 

VW 2 

VW 3 

- 4 

VW 3 

2 
W 

14 

33 
m 

2 

VW 3 

VW 5 

12 
W 

1 

1 
VW 

5 

a v = very; w = weak; m = moderate; s = strong. 

BaCeLn(O,N), (Ln = La, Ce) and BaLn20,. 
The unit cell volume of BaCe,(O,N), is slightly 
less than that of BaCe,04. This result would 
not be expected from oxidation number and 
ionic radii considerations. The Ce3 + , La3 + , 
andCe4+ CNVIionicradiiare 1.01, 1.03, and 
0.87 A, respectively; 02- and N3- CN IV ionic 
radii are 1.38 and 1.46A (23). Ifthe compounds 
are considered ionic the number of N3- and 
Ce4+ ions must be equal. The volume of a N3- 
ion is 2.028 A3 larger than that of the 02- ion 
while a Ce4+ ion is 1.557 A3 smaller than ace3 + 
ion. We would thus expect a unit cell volume 
increase of 0.470 A3/N atom. The volume de- 
crease therefore must reflect either more effi- 
cient lattice packing (which is unlikely), a 
smaller size for the nitrogen atom than its 

‘ionic’ radius indicates, or the presence of a 
greater quantity of Ce4+ than is required for 
charge balance. Magnetic and analytical data 
suggest a nitrogen atom smaller than predicted 
by its ionic radius. 

Specimens prepared for resistance mea- 
surements were -6 mm in diameter and 10 
mm long. Unidentified impurity reflections 
were observed in the X-ray powder diffrac- 
tion patterns of both sintered specimens. 
Their resistances at room temperature ex- 
ceeded 2 megohms. These resistivities are so 
large that even in the presence of a small im- 
purity level the products must be insulators. 
Although precise resistivities could not be 
obtained, these data suggest localized triva- 
lent and tetravalent cations. 
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The oxygen needed to substitute for loss 
of nitrogen came from the small amount of 
La,O, or CeO, present in the reactants. In 
reactions which involved CeN this contami- 
nant disappeared during reaction. In those 
which involved LaN the product contained a 
BaLa,O, impurity, an indication of insuffi- 
cient La,O, to allow the reaction to go to com- 
pletion. The reaction can typically be illus- 
trated by Eq. (I), 

6BaCeO,(s) + 4LnN(s) + Ln,O,(s) 800°C 
6BaCeLn03.&,,(s) + iN2(g) (1) 

Gas evolution indeed occurred; quartz tubes 
which contained the products were pressur- 
ized when they were opened in the glove 
box. When research was initiated the reac- 
tion was envisioned a 1: 1 BaCeO, : LnN 
combination and oxide was not considered 
necessary. The results indicate that the (Ba 
Ce,O,N) 3 : 1 0 : N product is less stable 
than less nitrogen-rich compounds; addi- 
tional oxide is therefore necessary for re- 
action. 

Reduction of Ce4+ by N3- also occurred 
in the CaO-CeO,-CeN system when we at- 
tempted to prepare CaCe,(O,N), at 950°C. 
The quartz tubes again contained a gas un- 
der pressure and a Ce,O,-like phase (pre- 
sumably Ce,(O,N),) resulted; CaCe,(O,N), 
did not form. The Ca*+ ionic radius is pre- 
sumed too small to stabilize the compound. 

Efforts to synthesize BaThCe(O,N), us- 
ing the difficult to reduce Th4’ to substitute 
for Ce4+ in BaCeO, were unsuccessful even 
though perovskite-type BaThO, was pre- 
pared (24). The 0.94-A Th4+ ionic radius 
is very close to that of Ce4+ (0.87 A) and 
reasonably close to that of Ce3+ (1.01 A) 
(23), suggesting that a mixed valence Ce- 
compound might form. However, a Ba 
ThO,-CeN reaction did not occur even at 
95o”C, a temperature higher than that for 
the BaCeO,-CeN reaction (800°C)-the 
only product was again a Ce,03-like phase 
which resulted from reaction between CeN 
and the CeO, impurity. This observation 

suggests mixed valence to be an important 
factor for the formation of BaM,(O,N),-type 
oxidenitrides-for cerium to exhibit both 
3 + and 4 + oxidation states the related cen- 
tral cation must exhibit some degree of triva- 
lency . 

It is noteworthy that the cerium oxideni- 
trides characterized so far have structures 
and lattice parameters closely related to 
those of their oxide counterparts. The X-ray 
diffraction pattern previously reported for 
the (Ce4+-containing) oxidenitride, Ce,N,O 
(25), said to be isostructural with Th,N,O, 
is almost identical to that of Ce,O, prepared 
by H, reduction of CeO, at 1200°C (25). This 
similarity can be demonstrated better by a 
comparison of their hexagonal lattice pa- 
rameters; “Ce,N,O”: a = 3.880 A, c = 
6.057 A vs. Ce203: a = 3.891 A, c = 6.063 
A. Given the essentially identical X-ray 
scattering powers of N3- and 02-, the small 
size difference between them, and the 
counter-balancing size difference between 
Ce4+ and Ce3+, it is difficult to distinguish 
Ce,N,O (Ce4+), Ce,O, (Ce3+), and Ce,NO, 
(Ce3+ and Ce4+) and other mixed valence 
states by X-ray diffraction. Similarly, the 
possibility that the reported Li,CeN, (25) 
with Ce4+ could be a mixed valent Li, 
Ce(O,N), cannot be dismissed. Since anion 
ordering has been observed in the cerium 
oxidenitride CeO,N,-, (26), the true sym- 
metries of these oxidenitrides may differ 
from predictions based upon X-ray diffrac- 
tion data. Further studies, e.g., neutron dif- 
fraction, appear necessary to characterize 
these compounds definitively. 
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